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ABSTRACT

In the microcrystalline regime, the behavior of grain boundary-controlled electroceramics is
well described by the “brick layer model” (BLM). In the nanocrystalline regime, however, grain
boundary layers can represent a significant volume fraction of the overall microstructure and
simple layer models are no longer valid. This work describes the development of a pixel-based
finite-difference approach to treat a “nested cube model” (NCM), which more accurately
calculates the current distribution in polycrystalline ceramics when grain core and grain
boundary dimensions become comparable. Furthermore, the NCM approaches layer model
behavior as the volume fraction of grain cores approaches unity (thin boundary layers) and it
matches standard effective medium treatments as the volume fraction of grain cores approaches
zero. Therefore, the NCM can model electroceramic behavior at all grain sizes, from nanoscale
to microscale. It can also be modified to handle multi-layer grain boundaries and property
gradient effects (e.g., due to space charge regions).

INTRODUCTION

There are a number of existing and proposed applications of electroceramics in
nanocrystalline form, including batteries, fuel cells, gas separation membranes, solar cells, etc.
[1] Nanoceramics are utilized as chemical catalysts and as chemical sensors. Their
microcrystalline counterparts are often used as active electrical devices (e.g., varistors and
thermistors). In certain cases, like the latter, grain boundaries are necessary to impart the
required electro-active or thermo-active responses. In other cases, grain boundaries act as
undesirable barriers limiting transport (e.g., in ionic conductors). In still others, boundaries
between dissimilar ceramics can impart enhanced ion transport due to high mobility space charge
regions (e.g., in “dispersed ionic conductors”) [2,3]. Given the high surface-to-volume ratios in
nanoceramics, grain boundaries can be expected to exert greater influence over
electrical/dielectric properties than in conventional microcrystalline ceramics.

There are several problems with existing grain boundary layer models (see below) insofar as
describing the electrical/dielectric response of nanoceramics is concerned. First, in the nanograin
regime, boundary layers such as space-charge regions or local oxidation layers can represent a
significant volume fraction of the overall microstructure (see Figure 1). Conventional layer
models, such as the “brick layer model” (BLM), are hardly adequate for such a situation.
Second, as pointed out by Maier [4], there can be differential transport coefficients parallel vs.
perpendicular to the grain boundaries. Finally, space charge regions represent spatially varying
electrical properties, which are not consistent with the simple property step functions assumed in
most layer models.
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Figure 1. Schematic of nanostructure with a significant grain boundary layer

The BLM was first conceived 25 years ago by Beekmans and Heyne [5], although Burggraaf
and co-workers are credited with coining the “brick layer” name [6,7]. The microstructural
picture is represented by Figure 2. The simplest form of the BLM, which we refer to as the
series-BLM (S-BLM), ignores the side-wall contributions (on the left) and considers only the
serial connections of grain cores and capping grain boundary layers (on the right). The
corresponding equivalent circuit is shown in Figure 3a, where the open box represents the
equivalent circuit (RgcCgc) of the grain cores and the shaded box represents the equivalent circuit
(RgbCgb) of the grain boundaries. Using the notation of Boukamp [8], this series combination of
two (RC) parallel circuits can be represented as (RgbCgb)(RgcCgc). This model is quite
appropriate for thin, continuous, and highly resistive second phase films such as siliceous layers
in low purity, microcrystalline ionic conductors [9].

The major deficiency of the S-BLM, ignoring side-wall contributions, was addressed by
Näfe [10], who developed a series/parallel BLM (SP-BLM) by connecting the central grain
core/grain boundary serial path of Figure 2 (on the right) in parallel with the side-wall grain
boundary path (on the left). The corresponding equivalent circuit is shown in Figure 3b. We
recently applied the SP-BLM to the analysis of nanoceramic impedance/dielectric spectra [11].

Figure 2. The brick layer model with series/parallel connectivity.
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Figure 3. Equivalent circuit representations for a) the series brick layer model (S-BLM), b) the
series/parallel BLM (SP-BLM), and c) the SP-BLM with different electrical properties parallel
vs. perpendicular to the grain boundary.

A modified form, which we refer to as the SP'-BLM, was developed by Maier and coworkers
[3,12] to allow for differential electrical conductivity perpendicular vs. parallel to the grain
boundary. The SP'-BLM equivalent circuit model is shown in Figure 3c.

A limitation common to both SP-BLM and SP'-BLM models is that current flow is restricted
to either the central core (series) path or the outer (parallel) path, which is clearly not the case in
an actual nanostructure (see Figure 1). Bonanos et al. [9] commented that the SP-BLM “is valid
at high or low conductivity ratios…” but had “reservations about the use of this model over the
entire σgc/σgb range, since it is not clear how, when σgb~σgc, this assumption that the current
flows via two separate mechanisms can be tenable.” Based upon comparison with the Maxwell-
Wagner/Hashin-Shtrikman effective medium theory, which sets the absolute upper and lower
limits of conductivity for isotropic two-phase composites, McLachlan et al. [13] concluded that
“…where it (the SP-BLM) lies outside the MW-HS limits (which it does at most intermediate
grain core volume fractions) it is fundamentally wrong.”

Effective medium theory (EMT) has also been applied to the complex impedance/ dielectric
response of electroceramics. EMT models obviate the limitations of the layer models by taking
into account real current distributions in heterogeneous media. They therefore provide important
benchmarks against which to compare microstructurally-based models.

As early as 1914, Wagner [14] showed that Maxwell’s equation for DC conductivity [15]
also worked for the complex conductivity. A MW medium can be visualized as built up from a
space-filling array of coated spheres, as in Figure 4, with each sphere surrounded by a mixture of
the two components having the mean or effective property value of the medium. As pointed out
by McLachlan et al. [13], the MW model is equivalent to the Hashin-Shtrikman upper and lower
bounds for conductivity of an isotropic two-phase mixture [16] and the well known Clausius-
Mossoti equation for dielectrics. In the limit that the volume fraction of the continuous (matrix)
phase becomes small (thin boundary layers), we showed that the impedance/dielectric response
becomes indistinguishable from the brick layer models [13]. Thin coatings, whether insulating

a b c

=
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Figure 4. The basic building blocks for the Maxwell-Wagner/Hashin Shtrikman effective media,
with either a) conductive coatings or b) insulating coating.

or conductive relative to the cores, behave identically regardless of the grain morphology (i.e.,
spheres vs. cubic “bricks”). Finite element analyses on “real” 2-D microstructures agreed well
with BLM predictions unless grain shape became highly distorted or a bimodal distribution of
grain sizes was present [17-19]. This means that simplified morphologies, whether spherical
(i.e., the various EMT models) or cubic (e.g., the nested-cube model below), stand a very good
chance of accurately describing the impedance/dielectric response of nanostructures with
equiaxed, mono-sized grains.

The range of minority phase volume fractions over which the MW-HS model is believed to
be valid is 0≤φ≤0.3 [9]. We are interested in developing a model capable of traversing the entire
range of grain core volume fraction from 0 (nanoscale) to 1 (microscale), assuming nanometer
scale boundary layers, e.g., consistent with space charge layers in electroceramics. One model
pertinent to the present work is that of Zuzovsky and Brenner [20]. The Zuzovsky-Brenner
Model (ZBM) consists of a cubic array of second phase spherical particles suspended in a
continuous matrix phase, the unit cell of which is shown in Figure 5a. This model is perhaps the

Figure 5. Unit cells of the a) Zuzovsky/Brenner model, with spherical second phase particles
(grain cores) on a simple cubic lattice and b) the nested cube model, with cubic second phase
particles (grain cores) on a simple cubic lattice.

a) b)

a) b)
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most representative of the situation in nanoceramics with relatively thick grain boundary layers;
grain core morphology will most likely not maintain overall grain shape due to
smearing/rounding of boundary layers (e.g., space charge regions, see figure 1). The problem
with the ZBM is that a percolation threshold (grain core-to-grain core) is reached at a grain core
volume fraction of 0.52.

The present work reports the development of an analogous nested-cube model or NCM, the
unit cell of which is shown in Figure 5b. The NCM has no percolation threshold, and is capable
of describing impedance/dielectric behavior over the entire range of grain core fractions, from
small values (where it matches ZBM behavior and also agrees with MW-HS model results) to
large values (where it matches the brick layer model results). As we will show, the NCM also
has potential for describing multi-layer grain boundary structures and property gradients at grain
boundaries (e.g., in space charge regions).

EXPERIMENTAL DETAILS

The nested cube model is not tractable analytically. A FORTRAN-77 finite-difference
numerical program, ac3d.f, was therefore modified to carry out pixel-based computer
calculations at finite frequencies. This program, developed at NIST, can be accessed at
http://ciks.cbt.nist.gov/monograph/, Chapter 2, along with a manual in HTML format [21]. The
program was designed to compute the electrical properties of random materials whose
microstructure can be represented by a 3-D digital image. It can also be used to simulate non-
random, but analytically intractable geometries, as in the present work. A system size of
between 203 and 803 pixels was employed to represent the 3-D structure of the NC model in Fig.
5b. Depending on the grain size, pixels are either grain core or grain boundary (for a single grain
boundary layer). In the computation process, a finite-difference node is set up in the middle of
each pixel. As part of the computation, bonds are assigned between each pair of nodes reflecting
the (RC) values assigned to each pixel. A conjugate gradient method is then used to solve
Laplace’s equation at each frequency to give the complex conductivity of the microstructure.
Real and imaginary conductivities are then converted to impedance and modulus quantities via
standard equations.

To generate the periodic simple cubic lattice of the NCM, it is necessary to add a shell of
imaginary states around the main system to maintain the periodic boundary conditions. For a
given grain core volume fraction, the system size is varied to assess the effect of spatial
resolution. A plot of conductivity vs. 1/N (where N is the number of pixels) is extrapolated to
give the conductivity at 1/N→0. Computing time restricted system size to below 1003 pixels.

The NCM was compared to EMT models (MW-HS) and the ZBM at small-to-intermediate
grain core volume fractions, and to the S-BLM and SP-BLM models at intermediate-to-large
grain core volume fractions. Unlike the NCM, analytical equations exist for each of these
models, which could be expressed in terms of complex conductivities, σ*=σr+iσi, involving both
real (σr) and imaginary (σi) components. Standard equations were employed in each case to
convert to impedance and modulus formats. We also considered Bode plots (log-log plots of real
and imaginary impedance or capacitance vs. frequency).
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First to be considered is the case of large grain core volume fraction, i.e., thin grain
boundary layers. Figure 6 shows a Nyquist (impedance or Z-plane) plot of NCM results vs. the
two brick layer models. The ZBM is not valid at this volume fraction of grain cores (0.927),
since this is above the percolation threshold of the ZBM (0.52). The ratio of grain boundary-to-
grain core conductivity (σgb/σgc) was set at 0.1 and the dielectric constants were the same
(εgb=εgc). The NCM is in good agreement with both the S-BLM and the SP-BLM, as also seen in
modulus and Bode plots (not shown). This is to be expected, since the grain boundary layers are
quite thin at this value of grain core volume fraction; D/d, the ratio of grain core dimension to
grain boundary thickness is approximately 39. The NCM picture at large grain core volume
fraction closely resembles that of the boundary layer models, especially the SP-BLM.

At the other end of the relative size spectrum, Z-plane results for a small grain core volume
fraction (0.162) are shown in Figure 7. The ratio of grain core-to-grain boundary dimension is
now D/d~1.20. For the calculations, the ratios of grain boundary-to-grain core properties were
set at σgb/σgc=0.10 and εgb/εgc=10, respectively. The NCM results are seen to approach the MW-
HS predictions, which is important, since realistic models must agree with EMT predictions at
small volume fractions. This agreement was also observed in Modulus and Bode plots (not
shown). There is also reasonable agreement between the NCM results and ZBM predictions.
Some differences can be anticipated based on the difference in grain core morphologies (see
Figure 5). If we consider the dilute limit (φ<0.1), the conductivity of a composite (σ) relative to
that of the matrix (σm) should vary with the volume fraction of highly conductive second phase
particles according to [22]:

(σ/σm) = 1 + [σ]∞ φ (1)

Figure 6. Simulated impedance response for various models assuming σgb/σgc = 0.1, εgb=εgc, and
a volume fraction of 0.927 for grain cores. See text for code to models. 
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Figure 7. Simulated impedance response for various models assuming σgb/σgc = 0.1, εgb/εgc=10,
and a volume fraction of 0.162 for grain cores. See text for code to models. 

where [σ]∞ is the “intrinsic conductivity” of the conducting particles, each shape having a
characteristic value. It has been established that the intrinsic conductivity of a conductive cube is
3.4 whereas that of a conductive sphere is 3.0 [22]. Therefore, it is not surprising to see some
differences, but otherwise close similarity between the two models. In the intrinsic range (φ<0.1)
we found that both the ZBM and NCM agreed well with the MW-HS model.

Figure 8. Simulated a) impedance and b) modulus response for various models assuming σgb/σgc

= 0.1, εgb/εgc =100, and a volume fraction of 0.385 for grain cores. See text for code to models. 
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Figure 9. Simulated a) impedance and b) capacitance Bode response for various models
assuming σgb/σgc = 0.001, εgb/εgc=10, and a volume fraction of 0.385 for grain cores. See text for
code to models

At intermediate values of grain core volume fraction, significant differences between the
NCM (or ZBM) and the brick layer models emerge. Figures 8a and b show Z-plane and M-plane
plots, respectively, for a conductivity ratio of σgb/σgc=0.1 and a dielectric constant ratio of εgb/εgc

=100 at a grain core volume fraction of 0.385. Similarly, Figures 9a and b show Z-plane and C-
Bode plots, respectively, for the same grain core volume fraction (0.385), but with a conductivity
ratio of σgb/σgc=0.001 and a dielectric constant ratio of εgb/εgc =10. In both cases the ratio of
grain core-to-grain boundary dimension is D/d~2.66 (NCM and SP-BLM). As at smaller grain
core volume fraction (e.g., φ=0.162), there is good agreement between the NCM and ZBM
predictions; the difference in grain core morphology between the two models does not seem to
make a significant difference in their frequency-dependent impedance/dielectric behavior.

The differences between the brick layer model results and the NCM/ZBM predictions are
noteworthy. This would support the contention that an EMT-like approach is necessary to
account for the true current distributions in the nanostructure, rather than discounting the role of
parallel-path grain boundaries (in the S-BLM) or restricting current flow in series vs. parallel
paths (in the SP-BLM and SP'-BLM). To test the general validity of the NCM, we calculated the
DC conductivity vs. grain core volume fraction over its entire range (0<φ<1) for a conductivity
ratio of σgb/σgc =0.01 or conversely σgb/σgc =10. This is plotted against the SP-BLM and MW-
HS models in Figure 10. (The ZBM and S-BLM were not plotted, since they do not cover the
entire volume fraction range.) The MW-HS lines are definitive, since they represent the absolute
upper (conductive matrix) and lower bounds (resistive matrix) for isotropic composites.
Whereas the SP-BLM results clearly fall outside the allowed range at certain volume fractions,
the NCM predictions consistently fall within the allowed range.
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Figure 10. DC resistivity bounds for various models assuming σgb/σgc = 0.1 for the upper bound
and σgb/σgc = 10 for the lower bound. See text for code to models.

The C-Bode plot differences in Figure 9b are also of note. This dual-plateau behavior is
characteristic of (RC)(RC) equivalent circuit interpretation (as in Figure 3a). We have shown
that the high frequency plateau is given by [23]:

Cre(hiν) = C2C1/(C1+C2) (2A)

and the low frequency plateau is given by:

Cre(loν) = (R2
2C2+R1

2C1)/(R1+R2)
2 (2B)

Only in the case of C2>>C1 is Cre(hiν)≈C1, and with the additional constraint that R2>>R1 is
Cre(loν)≈C2. This corresponds to the classical BLM instance where the second (R2C2)
component corresponds to very thin (therefore high capacitance) grain boundaries, usually with a
high resistance compared to the grain cores. It follows, however, that if the grain boundaries are
neither thin (as in Figure 1) nor much more resistive than the grain cores, the high frequency C-
Bode plateau will be a combination of the two component capacitances (Eq. 2A) whereas the low
frequency plateau with be a still more complex combination of all four parameters (Eq. 2B).
Unfortunately, many impedance/dielectric spectroscopy practitioners are prone to derive the
dielectric constant for a given microstructural element directly from what they interpret to be the
corresponding C-Bode plateau. This is highly suspect in the nanoscale regime, where the C-
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Figure 11. Nested cube model simulations of the impedance response for a single layer vs. a
multi-layer grain boundary (simulating spatially varying grain boundary properties). See text for
code to models.

Bode plateaus are bound to be complex functions of the four constituent electrical parameters
(σ1, σ2, ε1, ε2) and the volume fraction of grain cores. The NCM should be much more reliable
insofar as fitting impedance/dielectric spectra in the nanoregime in terms of local component
electrical properties and volume fractions.

The nested cube approach can be modified to account for multi-layer grain boundaries
and/or spatial gradients of electrical properties, e.g., associated with space charge regions.
Figure 11 shows preliminary Z-plane simulations for a grain boundary with three layers. Here
we have subdivided a grain boundary layer representing 61.5% of the overall grain volume
whose values are σgb/σgc=0.1 and εgb/εgc=100 into three layers of equal width (1/3 each) totaling
61.5% of the microstructure, and whose resistivities vary from 150% of the average in the near-
grain boundary layer(s) to 100% of the average in the middle layer to 50% of the average in the
near-grain core layer. Similarly, the local dielectric constant has been varied in the same manner
from layer to layer. This structure is hardly representative of the variation in properties in a
space charge region. Nevertheless, it offers some insight into the effect of local property
variations on the resulting impedance response. There is noticeable arc-depression for the
multilayer NCM as compared to the single layer NCM in Figure 11. Similar arc-depression has
been reported for nanoceramics in the literature [23]. Further work in this area is warranted.

CONCLUSIONS

A novel “nested cube model” (NCM) has been developed to describe the frequency-dependent
behavior of electroceramics in the nanocrystalline regime. The NCM is capable of

0

2000

4000

6000

8000

10000

12000

14000

0 5000 10000 15000 20000

Real Impedance [ohm]

-I
m

ag
in

ar
y

Im
p

e
d

an
ce

[o
h

m
]

Single layer NCM

Multilayer NCM

EE4.6.10



describing behavior over the entire range of grain sizes, from nanocrystalline (where grain core
volume fractions are small) to microcrystalline (where grain boundary thicknesses are small). It
was shown that the NCM agrees with effective medium theory (Maxwell-Wagner/Hashin-
Shtrikman model) at small grain core volume fractions, with the Zuzovsky-Brenner model (grain
core spheres on a simple cubic lattice) at intermediate grain core volume fractions, and with the
brick layer models at large grain core volume fractions, as expected. In the intermediate volume
fraction regime, the NCM is a more accurate model to describe the current distributions between
grain cores and grain boundaries. Such a model is necessary to accurately deconvolute local
electrical properties (conductivity, dielectric constant) from impedance/dielectric spectra. The
NCM can be modified to account for multi-layers and/or spatial property gradients at grain
boundaries.
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